
■J- 

Serial No.       641.019 

Filing Date      15 April 1996 

Inventor Michele P. McCollum 
Clementina M. Siders 

NOTICE 

The above identified patent application is available for licensing. Requests for information should be 

addressed to: 

OFFICE OF NAVAL RESEARCH 
DEPARTMENT OF THE NAVY 
CODE OOCC3 
ARLINGTON VA 22217-5660 

I     DISTPJMJTtON STA j 

Appronsd tat y-aiaJta »teu*e; 

19960712 070 DTIC iUi!uui:i'"J£ mu£M>QlE3 1 



THIS DOCUMENT IS BEST 

QUALITY AVAILABLE. THE 

COPY FURNISHED TO DTIC 

CONTAINED A SIGNIFICANT 

NUMBER OF PAGES WHICH DO 

NOT REPRODUCE LEGIBLY. 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 
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RACKGRQTTMU OF THE INVENTION 

(1)  Field of the Invention 

This invention relates to methods for determining the 

approximate resonance frequencies of underwater structures, and 

is directed more particularly to such a method as is more 

efficient than current harmonic sweep methods and more accurate 

than modal finite element/boundary element methods, the latter 

being based on an assumption of fluid incompressibility. 

(2)  Description of the Prior Art 

Usually when modeling a structure in water, one is 

interested in either 1) how the structure behaves in a certain 

frequency range, or 2) at what frequency one obtains a desired 

mode shape.  This invention is concerned with the latter.  The 
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classical approach is to perform an in-water modal analysis-to7 -• 

determine the in-air resonance frequencies.  After displaying the 

mode shapes, one determines a mode shape of interest, and 

therefore a resonance frequency of interest.  One then performs 

an in-water harmonic analysis by first estimating a coarse 

frequency range and then refining the range to capture the 

resonance frequency within a desired tolerance.  For large models 

this is a very time consuming process. 

There is thus a need for a technique for determining the 

resonance frequencies of such structures in a more efficient 

manner. 

The behavior of complex fluid-loaded structures typically is 

modeled using one of the following methods:  1) mathematically 

describing the structure and surrounding fluid with finite 

elements,that is, regional subdivisions of the structure in each 

of which the behavior is described by a separate set of assumed 

functions representing the stresses or displacements in a given 

region; 2) describing the structure with finite elements and the 

fluid with boundary elements, that is, two-dimensional elements 

located on the wetted surface of the structure, such elements 

describing the acoustic loading of the structure; and 3) 

describing the structure with finite elements and the fluid with 

a combination of finite elements and infinite elements, that is, 

elements used in conjunction with finite elements to define the 

exterior fluid.  These infinite elements allow the domain of a 

finite fluid element to extend to infinity in one or more 
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directions by mapping an infinite domain into a finite domain.7 ••• 

For all three methods, the fluid-loaded behavior is generally 

determined using a harmonic, i.e., forced, analysis involving 

computations at each frequency over a specified range of 

frequencies.  Since the in-water resonance frequency, that is, 

the frequency at which the input reactance vanishes and the input 

resistance is small, is not known a priori, this procedure can 

involve multiple frequency sweeps.  Some finite element programs 

do offer a fluid-loaded modal analysis, but the use of finite 

elements to model the fluid implies many additional degrees of 

freedom in the system of equations.  See The  Finite  Element 

Method,   by O.C. Zienkiewicz (McGraw-Hill UK, London, 1977), 3rd 

;ed.  A combination of finite and infinite elements to model the 

Ifluid results in fewer additional degrees of freedom, but, at 

present, in-fluid modal analysis is not offered in the major 

codes possessing infinite elements.  As with infinite elements, 

modeling the fluid with boundary elements does not result in any 

additional degrees of freedom for the fluid, which is desirable. 

However, because this method is based on a frequency-dependent 

influence matrix to describe the fluid, either one must make the 

assumption that the fluid is incompressible, in which case the 

fluid influence matrix is approximated by its low frequency 

limit, see "Solution of Elasto-Acoustic Problems using a 

Variational Finite Element/Boundary Element Technique," by J.P. 

Coyette and K.R. Fyfe, in Numerical   Techniques   in Acoustic 

Radiation,   edited by R.J. Bernhard and R.F. Keltie, NCA-Vol. 6 

I 
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(ASME, New York, 1989), or one must know the in-water 

eigenfrequency a priori in order to accurately compute the fluid 

load.  The fluid influence matrix is a complex, frequency 

dependent, symmetric matrix that represents the mass loading 

(imaginary part) and damping (real part) effects of an exterior 

or interior fluid on the vibration of a structure.  In the case 

of an enclosed interior fluid, the real part of the influence 

matrix is zero. 

The usual procedure for determining the resonance frequency 

of structures, using boundary elements to represent the fluid, is 

as follows: 

1) Perform an in vacuo eigenvalue analysis using a finite 

element model to determine the frequencies and modes of the 

structure in question.  The eigenvalue equation is: 

[K] -co/[M] (^ = 0 (D 

where [K] is the stiffness matrix, [M] is the consistent mass 

matrix, w,2 is the set of eigenvalues, and 0, is the set of 

orthogonal eigenvectors.  This equation is written for elastic 

structures, although the structure can also be piezoelectric or 

magnetostrictive. 

2) Use boundary elements to compute the influence matrix 

over a selected frequency range to attempt to encompass the in- 

fluid resonance frequency of interest.  Usually, a coarse 

frequency resolution is used initially since the in-fluid 

frequency is not known a priori. 
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3)   Compute the forced fluid-loaded behavior of the '   .. .   '  ... 

structure by performing a harmonic analysis using mass and 

stiffness matrices (computed by a finite element program) and the 

influence matrix.  The harmonic equation is 

[K]-w2[M]+ju[Z (G>)] u=F, (2) 

the frequency of excitation, Z(w) is the influence matrix, {u} is 

the vector of computed nodal displacements, and {F} is the vector 

of specified applied forces. The derivation of this equation may 

be found in "A Coupled Finite Element/Boundary Element Approach 

for Predicting the Performance of High-Powered, Low-Frequency 
i 

(Projectors with Two Applications (U) , " by R.E. Montgomery, CM. 

Siders, and T.A. Henriquez, Journal Underwater Acoustics, Special 

Issue on Transducers, January 1991, and in "Numerical Solution of 

Acoustic-Structure Interaction Problems," by H.A. Schenck and 

G.W. Benthien, Naval Ocean Systems Center Technical Report 1263, 

April 1989.  If [Z] is computed using a nodal boundary element 

code, then it is brought into the equation unmodified.  If it is 

computed using a "patch" boundary element code, then the third 

term in Equation (2) becomes:  j to [X] [Z (co) ] [X]T, where [X] is a 

matrix that translates between field variables at the centroid of 

a patch and the equivalent variables at the nodes. 

4)   Examine the computed nodal displacements to determine 

if the behavior of the structure at any frequency in the selected 

frequency range matches the behavior desired mode.  If the 

desired mode is not present in the frequency range, a new 



1 

2 

3 

4 

5 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

frequency range must be chosen and the user must go back to-step - 

2.  If the displaced shape of interest is present in the 

frequency range that was run, proceed to the next step. 

5) The approximate in-fluid resonance frequency is the 

frequency at which the structural displacement is a maximum.  To 

determine this frequency, one must examine the displacement at a 

node that is significant for the mode of interest.  Specifically, 

one must not select a node whose displacement is zero or nearly 

zero for the mode of interest. 

6) Refine the approximation of the in-fluid resonance 

frequency by choosing a smaller frequency step in a shorter range 

of frequencies about the frequency identified in step 5, and 

recompute the in-water displacements. 

7) Repeat steps 2-6 until the resonance frequency is 

determined with the desired accuracy. 

The above computations can be lengthy and time consuming 

inasmuch as step (6) can require repeated choices or 

approximations of in-fluid resonance frequencies about the 

frequency identified in step (5).  To shorten such computations, 

knowledge of the approximate in-water frequency is required 

(usually not known).  The above procedure can provide an accurate 

calculation of the fluid-loaded behavior of the structure- 

however, it can be computationally prohibitive for realistic 

structures for which the fluid-loaded resonance frequency is not 

known a priori. 
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There is thus a need for a method for determining the - ■ ~    - 

resonance frequency of a structure surrounded by a compressible 

fluid, wherein the compressibility of the fluid is a factor and 

wherein the in-water resonance frequency can be computed based 

upon a known frequency of the structure. 

SUMMARY OF THE INVENTION 

It is, then, an object of the invention to provide a method 

for using boundary elements in a fluid-loaded modal analysis that 

eliminates the need for a priori knowledge of the in-water 

eigenfrequency, and that does not require the assumption of 

incompressibility. 

With the above and other objects in view, as will 

hereinafter appear, a feature of the present invention is the 

provision of a method for determining the approximate resonance 

frequency of a structure surrounded by a compressible fluid, the 

method comprising the steps of:  (1) using a finite element 

model, performing an in-vacuo eigenvalue analysis to determine 

in-vacuo frequencies and mode shapes of the structure; (2) 

selecting one of the mode shapes as an in-vacuo mode of interest, 

along with an attendant eigenfrequency thereof; (3) using a 

boundary element program, computing an influence matrix at the 

eigenfrequency of the selected mode of interest; (4) combining 

the computed influence matrix with structural stiffness and mass 

matrices from a finite element program, and using the modified 

matrices, computing eigenvalues of the structure, as well as 
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eigenvectors; (5) selecting from the computed eigenvectors a- '  ■■■■ 

computed mode having substantially the same displaced shape as 

the in-vacuo mode of interest; (6) determining the eigenfrequency 

of the selected computed mode; (7) determining any difference 

between the computed eigenfrequency of the selected computed mode 

and the in-vacuo eigenfrequency of the selected in-vacuo mode of 

interest; wherein (8) if the difference is equal to, or less 

than, a selected tolerance, the computed eigenfrequency of the 

computed mode is the approximate resonance frequency of the 

structure surrounded by compressible fluid; and (9) if the 

difference is greater than the tolerance, repeating step (3) 

substituting the computed eigenfrequency of the selected computed 

mode for the in-vacuo eigenfrequency for the in-vacuo mode of 

interest, and thereafter, repeating steps (4) - (9), substituting 

in step (3) a most recent computed eigenfrequency of the selected 

computed mode for the previously used computed eigenfrequency of 

the selected computed mode. 

The above and other features of the invention will now be 

more particularly described with reference to the accompanying 

drawings and pointed out in the claims.  It will be understood 

that the particular method embodying the invention is described 

and shown by way of illustration only and not as a limitation of 

the invention.  The principles and features of this invention may 

be employed in various and numerous embodiments without departing 

from the scope of the invention. 
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BRIEF DESCRIPTION OF THE DRAWINGS - . '   -■ 

Reference is made to the accompanying drawings in which is 

shown an illustrative embodiment of the invention, from which its 

novel features and advantages will be apparent. 

In the drawings: 

FIGS. 1-11 are charts illustrative of numerical values 

determined in Examples #1 and #2 set forth in the specification; 

FIG. 12 is a graph illustrative of numerical values 

determined in Example #1; 

FIG. 13 is a side elevational view of an acoustic projector 

which is the structure under study in Example #2; 

FIG. 14 is a sectional view of the acoustic projector of 

FIG. 13; 

I     FIG. 15 depicts an axisymmetric finite element model of the 

Iprojector of FIGS. 13 and 14; and 

:     FIG. 16 depicts a 3-D model of the projector of FIGS. 13 and 

14 . 

DESCRIPTION OF THE PREFERRED EMBODIMENTS 

The objective of the inventive method is to compute in-fluid 
j 

|modal frequencies using boundary elements to describe the fluid, 

iwithout assuming the fluid to be incompressible.  This approach 

eliminates both the hit-and-miss of the harmonic boundary element 

procedure described above, and the necessity of meshing a portion 

of the infinite fluid domain, as in the finite element approach. 

As stated before, the reason this is not possible with the usual 
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boundary element description is that the computation of the -fluid 

influence matrix requires knowledge of the in-fluid frequency of 

the mode of interest.  Of course, in the absence of the 

experimental measurements, the designer does not know this 

frequency.  What is known, or is readily ascertainable, is the in 

vacuo frequency of the mode.  In the method described below, the 

in vacuo frequency is used as the starting point of an iterative 

eigenvalue analysis. 

The equation for a standard in-vacuo finite element 

eigenvalue analysis is as follows: 

[K]-ui
2[M](J)i = 0 (3) 

where W; and 0; (i= 1 to n) represent the eigenvalues and 

eigenvectors, respectively, of the in- vacuo structure.  For the 

examples presented herein, the stiffness matrix is assumed to be 

real; that is, there is no structural damping.  Structural 

damping can be included, leading to a complex eigenvalue 

analysis, but its effect on the eigenvalues is usually small. 

The idea of the present analysis is to include the fluid 

loading in the eigenvalue equation.  As stated hereinabove, the 

real part of the influence matrix [R] , describes the radiation 

damping, and the imaginary part divided by the radian frequency 

describes the added mass of the fluid. The radiation damping and 

mass can be added to the structural stiffness and mass matrices, 

10 
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respectively. These additional terms are frequency dependent;7 

however, choosing a specific angular frequency, w0, we have the 

following relation: 

(([K] + JG)0]) - o/([M] +  U(CJ°)] )Ui}  = W (4) 

For simplicity, we can rewrite as 

where 

ÜK'l-Q/fM'üK^J = lot 

[K'] = [K] +JG)0[R(QO)] , 

(5) 

(6) 

and 

[M'] = [M] + 
[X(coJ] 

CO, 
(7) 

Note that [R(GJ0)] and [X(w0)]/cu0 each comprises a matrix of 

'constants; therefore Equation (5) is a mathematically valid 

eigenvalue equation.  (The form of an eigenvalue equation 

requires that [K] and [M] not depend on w.)  Nevertheless, 

Equation (5) only represents the physical behavior of one in- 

fluid eigenvector.  That is, if w=io0   for some i, and [Z (w) ] is 

computed at GJ0, then Equation (5) will give the correct 

eigenvector corresponding to the eigenvalue Wj.  There are (n-1) 

other eigenvalues and eigenvectors, but none of them has the 

correct fluid loading since [Z] is computed at the frequency 

corresponding to mode i.  For this reason, one can only use this 

method for determining one in-fluid eigenvalue at a time.  For 

11 
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practical design problems, this is not a serious limitation- • 

because the designer is generally only interested in one mode. 

The problem remains of finding the value of the 

eigenfrequency for the particular mode of interest.  To do this, 

we begin with the only information that is available, that is, 

the in-vacuo eigenvalue of the mode of interest.  We compute the 

influence matrix at this frequency, modify the mass matrix (and 

the stiffness matrix if desired), and solve the resulting 

eigensystem.  If the modes remain uncoupled under fluid loading, 

we will find that there is a mode in the set of in-fluid 

eigenvectors that matches the shape of the in vacuo mode of 

interest.  We then obtain the frequency corresponding to this 

mode, recompute the influence matrix at this frequency, and so 

on, until two consecutive in-fluid eigenvalue computations match, 

for the mode of interest, within a specified tolerance. 

This new procedure for determining the fluid-loaded 

resonance frequency of a structure is as follows: 

Perform an in-vacuo eigenvalue analysis using a finite 

element model to determine the in vacuo frequencies, and mode 

shapes.  This step is the same as step 1 in the above described 

prior art method.  Select the mode of interest, i, and its 

eigenfrequency.  The in vacuo eigenfrequency of interest is 

designated f0. 

Compute the influence matrix, [Z], at f0 using a boundary 

element program. 

12 
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Solve a modified eigenvalue problem using the mass and -■'■ 

stiffness matrices from a finite element program and the computed 

influence matrix.  The equation used here is: 

where 

{[K'J-co/tM'li^iol 

[K'] = [K] +jw0Re[ (co0) ] , 

(8) 

(9) 

and 

[M'] = [M] + 
I/n[Z(co0) ] 

to 
(10) 

and w0 = 27rf0.  "Re" and "Im" represent the real part and 

imaginary part, respectively, of the complex [Z].  In Equation 

(8), the structural mass matrix has been modified to include the 

entrained fluid mass (radiation mass), and the structural 

stiffness matrix has been modified to include the radiation 

damping.  In practice, the effect of radiation damping on the in- 

fluid eigenfrequency is much smaller than that of the radiation 

mass, so that the stiffness matrix can be left unmodified.  With 

this simplification, the complex eigenvalue problem, Equation 

(8), becomes purely real. 

Examine the computed eigenvectors to determine which mode 

has the same displaced shape as the selected in vacuo mode of 

interest.  The computed frequency of the selected mode is 

designated f. 

13 
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Compare f and f0.  If the difference is less than a   .. .   '  .... 

specified tolerance, then f is the approximate fluid-loaded 

resonance frequency.  If the difference is greater than the 

specified tolerance, then set f0=f and return to computation of 

the influence matrix and repeat the steps thereafter. 

The procedure outlined above is based on complex 

eigenfrequency computations, which require significantly more 

computation time than real eigensolutions.  However, for most 

problems, the in-fluid eigenfrequency is determined primarily by 

the added mass of the fluid, so that the effects of the radiation 

damping can be ignored.  In this case, [K']=[K] and the 

eigensolution becomes purely real.  The differences between the 

in-water resonance frequencies with and without radiation damping 

will be examined hereinbelow. 

At this point, an operator may be concerned with the number 

of iterations required to determine the in-fluid eigenfrequency. 

If the procedure requires a large number of iterations, it might 

be faster just to perform a harmonic frequency sweep over a very 

wide frequency range.  This is a valid concern, but it turns out 

that at low ka, where ka is the non dimensional wave number (we 

are restricted to low ka for mode preservation, at least in 

theory), the solution converges very quickly.  In fact, the first 

iteration in the modified eigensolution, that is, the solution 

for which the [Z] matrix is computed at the in vacuo frequency, 

results in a reasonable estimate of the in-fluid eigenfrequency. 

The reason for this can by understood by studying the classical 

14 
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problem of the fluid loading on a piston in an infinite baffle" 

The added mass of. a piston on an infinite baffle is given by: 

Mp 
_   Xp(o)) _ ixp0a3H1(2ka) 

0) 2 = 2 k2a 
(11) 

where a is the radius of the piston, p0 is the density of the 

medium, k is the fluid wave number, and H, is the first order 

Struve function.  For ka<<l, this becomes: 

Wp 
8poa

: 

(12) 

so the added mass is constant for small values of ka.  Moreover, 

as ka increases to values near one, the added mass of Equation 

1(11) changes slowly, as shown in FIG. 12.  The implication of 

.this is that for low ka, the added mass of the fluid computed at 

the in vacuo eigenfrequency is not very much different from the 

correct added mass computed at the in-fluid eigenfrequency.  The 

in-fluid frequency is always lower than the in vacuo value, so we 

are headed in the direction of lower ka.  This concept will be 

demonstrated for a realistic underwater projector hereinbelow. 

The modified eigenvalue procedure described above has been 

applied to several problems.  In each case the ATILA (Analyse de 

Transducteurs par Integration des equations de LAplace) finite 

element and the CHIEF boundary element codes were used.  The 

modified modal analysis was implemented in two ways.  In both 

implementations, the CHIEF code was used to generate the fluid 

influence matrix.  In the first implementation, the stiffness and 

15 
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mass matrices were computed by ATILA and written to an external .. 

file.  This file and the file created by CHIEF were read into an 

external program where they were combined and solved using 

standard LAPACK modal routines.  Both real and complex 

eigensolutions (the latter included radiation, but not 

structural, damping) were performed, but the use of the external 

program was limited to very small problems because of computer 

memory.  In the second implementation, the CHIEF influence matrix 

was brought into ATILA, and used to modify the mass matrix.  Then 

a standard ATILA modal analysis was performed.  The reason for 

modifying only the mass matrix is that the ATILA code performs a 

real eigenvalue solution. 

Two examples will be presented here:  a water-loaded 

spherical shell, and a mechanically driven projector in water. 

In the latter case, the method has been applied to both a two- 

dimensional (2-D) and a three-dimensional (3-D) model.  Results 

will include in vacuo and in-water eigenfrequencies and modes, 

and the harmonic response with and without radiation damping.  In 

addition, the error introduced by assuming incompressibility of 

the fluid will be presented. 

EXAMPLE 1 

The first example is a water-loaded spherical steel shell, 

the geometry of which has been chosen to match that of Junger and 

Feit in "Sound, Structures, and their Interaction" by M. C. 

Junger and D. Feit (MIT Press, Cambridge, MA) 1972.  The behavior 

16 
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of the shell is assumed to be axisymmetric.  The ratio of the 

thickness to radius of the shell is 0.01, the Poisson's ratio is 

0.30, the ratio of structural to fluid density is 7.67, and the 

ratio of plate speed in the shell to sound speed in the fluid is 

3.53.  In "Sound, Structures ..." there are presented a 

transcendental equation and a table of results for undamped 

eigenfrequencies, neglecting flexural effects.  The modes of the 

shell are characterized by a value of n>0.  For the n=0 mode, 

only one real eigenfrequency exists; this is the breathing mode. 

For each mode n>0 there are two eigenfrequencies.  The two sets 

or branches of modes represent two different types of behavior. 

The ns2 modes of the lower branch are characterized by 

predominantly radial motion, while the nsl modes in the upper 

branch have more tangential motion. 

The axisymmetric ATILA finite element model of the spherical 

shell comprises 64 eight-noded quadrilateral elements, with each 

node having two displacement degrees of freedom.  These elements 

represent the complete axisymmetric equations of motion, so that 

flexural effects are included.  This model was used to compute 

the in vacuo eigenfrequencies and modes.  The corresponding 

boundary element model consists of 64 line elements which 

coincide with the external boundary of the finite element mesh. 

The CHIEF code generates a 3-D mesh from the 2-D geometry, using 

a specified number of rotational symmetry blocks, nblks, and 

solves the equation set in three dimensions.  In this case, the 

number of rotational symmetry blocks is 100.  Because the 

17 
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resulting influence matrix is computed for the full 3-D mesh,, it - 

must be scaled by the factor nblks/(27r) so that it represents the 

fluid impedance per radian, making it compatible with the 

axisymmetric finite element matrices. 

FIG. 2 provides the in vacuo eigenfrequencies from "Sound, 

Structures ...", which is incorporated by reference herein, and 

those from the ATILA finite element model, for the first few 

modes of the lower branch and the first mode of the upper branch. 

All frequencies are rounded to the nearest hertz.  The percent 

differences between the two sets of results are computed relative 

to the analytic result.  The fact that the two sets of 

frequencies are in such close agreement indicates that for this 

thickness-to-radius ratio and frequency range, flexural effects 

are negligible, and that the structural finite element model 

accurately represents the elastic behavior of the sphere. 

FIG. 3 provides the undamped in-fluid eigenfrequencies from 

Sound, Structural ..." and those from the modified modal 

analysis implemented in the ATILA code, for the first three 

nonzero eigenfrequencies of the lower branch (ka~l.l to 1.6), and 

the first eigenfrequency of the upper branch (ka-4).  The 

radiation damping is neglected for both sets of results.  The 

differences are again computed relative to the analytic result. 

This part of the analysis was limited to low order modes to avoid 

the need for a finer numerical mesh.  In FIG. 3 the largest 

18 
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difference between the undamped in-water modal frequencies for 

the modified finite element/boundary element (FE/BE) method and 

the analytic method is 4.0%. 

The number of iterations required to reach convergence to 

within one hertz for the results in FIG. 3 varied between four 

and seven.  Had the convergence tolerance been specified as a 

percentage of the eigenvalue, it is assumed that roughly four 

iterations would have been required for any of the modes.  This 

result was obtained without using any of the various techniques 

available for speeding up the convergence process, for example, 

the bisection method.  The low number of iterations is, 

therefore, somewhat surprising, especially as the mode order and 

ka increase.  As ka increases, the variation of the added mass 

with frequency becomes more significant, so that the initial 

estimate would be expected to be worse, requiring more iterations 

before convergence.  For realistic problems, this discussion is 

moot because the modes are not likely to be preserved at such 

high values of ka. 

The differences shown in FIG. 3 are not entirely a result of 

the in-fluid modal method.  A more appropriate test is to compare 

the results of the modified modal method with the results of a 

harmonic analysis using the same FE/BE model, since the peak in 

the harmonic response of the numerical model is what we are 

trying to determine.  FIG. 4 presents this comparison under the 

conditions that the harmonic response is computed using only the 

imaginary part of the complex influence matrix.  The percent 

19 
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differences are computed relative to the harmonic results. . . ~-   -■ 

Comparing FIGS. 2, 3, and 4 we see that the differences between 

the in-water eigenfrequencies obtained from the analytic and 

FE/BE models are primarily a result of the differences in the way 

the fluid and the fluid/structure interaction are described.  The 

fact that the in vacuo eigenfrequencies are in close agreement 

(FIG. 2) indicates that the structural models are equivalent.  In 

any case, a difference of 4% is not considered to be significant. 

The error caused by neglecting the effects of radiation 

damping can be determined by comparing the peaks in the harmonic 

response computed using only the imaginary part of the influence 

matrix with those computed using the complex influence matrix 

see FIG. 5).  The percent differences are computed relative to 

the latter results.  The most significant effect of radiation 

damping is on the lowest mode, for which the resonance frequency 

is lowered by 1.5%.  For the higher modes, the effect is 

indiscernible for all practical purposes. 

Having shown the accuracy of the iterative in-water method, 

there remains one point of interest relative to the spherical 

shell problem.  It is stated above that if finite elements are 

used to describe the fluid, one must contend with a large number 

of additional equations in the eigenvalue solution.  It is also 

pointed out that an in-water eigenvalue solution previously was 

not possible with boundary elements, unless one assumed 

incompressibility.  We will now quantify the error introduced by 

the assumption of incompressibility, for the spherical shell in 
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water.  This assumption implies that there is no radiation .. ~-    .. 

damping, and that-the added mass of the fluid is computed at 

ka=0. 

FIG. 6 compares the results of the iterative in-water modal 

technique with those obtained when the fluid influence matrix, 

[Z] , is computed at ka=0, i.e., at GJ=0 .  For the modes in the 

lower branch, we see that the differences in the computed 

eigenvalues are between 3% and 7%, and that the eigenvalues from 

the incompressible solution are higher than the values obtained 

from the iterative technique.  For the breathing mode, however, 

the error in the incompressible value is 66%, and it is lower 

than the correct value.  The differences in the magnitude and 

sign of the error between the two branches can be explained by 

studying FIG. 13.  Focusing on the n=2/lower mode, we see that 

the added mass at ka=0 is lower than the value at ka=l.l (the 

value of ka corresponding to iterative eigensolution).  Since the 

added mass is too low, the computed eigenfrequency is too high. 

The same is true for modes n=3 and n=4, although the eigenvalue 

error is progressively lower sine the error in the added mass 

decreases with increasing mode order.  If we now consider the 

added mass of the n=0/upper mode (breathing mode) in FIG. 13, we 

see that the value at ka=0 is much greater than that at ka=4.5 

(the ka value at the true in-water eigenfrequency).  This leads 

to an incompressible eigenfrequency that is much lower than the 
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true value.  These results demonstrate that while the 

incompressibility approximation may be satisfactory at very low 

ka values, the error increases as ka increases. 

EXAMPLE #2 

The second example is a low frequency projector 20 that 

operates by mechanically driving two opposing flexural disks 22 

(see FIGS 14 and 15).  The disks 22 have a linearly varying 

thickness, with the greatest thickness being at the center.  A 

circular piston 24 drives a finite area at the center of each 

disk 22. 

The behavior of the projector 20 was described first with an 

axisymmetric finite element model (using the ATILA code) to 

determine the appropriate boundary conditions and the general 

character of the operational mode, which corresponds to the 

fundamental mode of a circular plate.  Then a 3-D model was 

developed to study the influence of parasitic modes, i.e., 

undesirable modes that might interfere with the mode of interest. 

For both models, the fluid loading was described using the CHIEF 

boundary element program.  At the time of the original analysis, 

the method described herein was not available.  Therefore, the 

m-water behavior of the projector was determined using a 

harmonic analysis with an applied force at the center of the 

disks.  For the mode of interest the flexural disks vibrate in 

the fundamental mode of a circular plate, which has significant 

accession to inertia (large added mass) under fluid loading.  The 
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result is that the in vacuo modal frequency is greatly reduced^ .. _ 

when the projector is submerged.  Therefore, a broad frequency 

sweep and a great deal of computation time were required to 

determine the in-water resonance frequency using the harmonic 

method.  This problem led to the conception of the idea for the 

in-fluid modal method for finite element/boundary element models. 

The axisymmetric finite element model of the projector is 

shown in FIG. 16.  In addition to the axial symmetry, there is a 

plane of symmetry through the center plane of the housing.  The 

mechanical structure, comprising the disks, housing, and 

compliant pad, is modeled with eight-noded quadrilateral 

elements.  Each node has two translational degrees of freedom. 

For this 2-D representation, the boundary element model is 

generated using line elements, with a one-to-one correspondence 

between the structural and boundary elements.  The CHIEF code 

then generates a 3-D model for the computation of the fluid 

influence matrix.  Because CHIEF cannot combine both rotational 

and planar symmetry, the [Z] matrix was computed for a 

rotationally symmetric geometry with no planar symmetry.  The 

computed matrix was then reduced to account for planar symmetry. 

The results for the in vacuo and in-water eigenfrequencies 

and the in-water harmonic resonance frequencies are presented in 

FIG. 7.  The in-water ka values are also given.  Mode 3 has been 

omitted from the results because it is a mode of the housing, and 

we are interested in the disk modes.  In FIG. 7, we see that the 

in-water eigenfrequencies computed with the modified modal method 

23 
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are very close to the peaks in the harmonic response computed " -• 

with a purely imaginary influence matrix.  The effect of 

radiation damping on the harmonic response peaks is demonstrated 

by comparing these harmonic response peaks to those computed with 

the complex influence matrix.  For the mode of primary interest 

in this study (mode 1), the effect is negligible, while for mode 

5, there is a 1.6% difference between the two results.  It is 

surprising to note that the modes are preserved in water for ka 

values at least as high as 7, but this likely is a result of the 

axisymmetry of the model.  The nonaxisymmetric modes are 

eliminated, thus reducing the possibility of modal coupling. 

The results presented thus far have demonstrated the 

accuracy of the modified modal method for a spherical shell and a 

flexural disk projector.  It remains to show that the proposed 

method is also efficient.  FIG. 8 presents the progression of the 

iterative eigenvalue calculation for the axisymmetric projector 

model.  These results were obtained without any schemes for 

improving the convergence efficiency.  For each of the first four 

disk modes, the procedure begins with the in vacuo modal 

frequency (column 2).  For mode 1, only two in-water eigenvalue 

calculations are required.  Modes 2 and 4 each require three 

iterations.  Mode 5 converges to within 2 Hz after three 

iterations, but then begins to jump back and forth between two 

values.  This problem would be eliminated by any of the available 

convergence improvement schemes, even the simple bisection 

method.  The first and last columns of FIG. 8 give the starting 
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and ending mode numbers for the four modes of interest.  Note. T .... 

that the eigenvector that was fifth in the list of in vacuo 

modes, becomes the sixth mode in water.  This switching of modal 

order is always a possibility because the in vacuo eigenfrequency 

of a higher mode whose motion is predominantly radial can be 

lowered more by fluid loading than that of a lower mode whose 

motion is mainly tangential.  This is why it is very important to 

examine the eigenvectors, at least after the first in-water 

eigenvalue computation.  For most problems, the largest change in 

the influence matrix occurs in the first iteration, so the modal 

order does not usually change after this step. 

The full 3-D model of the flexural disk projector is shown 

in FIG. 17.  This model has two planes of symmetry.  Only the 

fundamental disk mode of the projector (mode 5 for the 3-D model) 

was studied using this model, because more elements would be 

required for higher values of ka.  FIG. 9 provides the in vacuo 

eigenfrequency and the in-water eigenfrequencies and resonance 

frequencies for the fundamental mode.  Note that the in vacuo 

eigenfrequency computed using the 3-D model is slightly higher 

than that obtained with the axisymmetric model.  This is not 

unexpected since the two models have different mesh densities. 

The in-water modal frequency computed with the modified modal 

method is 43 Hz, while the peak in the in-water harmonic response 

is at 41 Hz (using either the imaginary or complex influence 

matrix).  This difference is thought to be a result of the large 

number of equations in the eigensystem.  While the difference 
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corresponds to an error of nearly 5%, in practical terms 2 Hz is., 

not significant.  FIG. 10 shows the progression of the iterative 

procedure for mode 5. 

In FIG. 10, note that the in-water eigenvalue converges 

after only two iterations.  FIG. 11 compares the CPU time 

required for two in-fluid eigenvalue computations to the time 

required for a typical harmonic frequency sweep, both performed 

in ATILA on a DEC 3000/400 Alpha workstation.  It is assumed 

(conservatively) that the first harmonic sweep is done over ten 

frequencies, and that the in-water eigenvalue lies within the 

first range of frequencies selected.  The harmonic sweep requires 

over six hours of CPU time, while the modified modal method 

requires only one-half hour.  If one is not so fortunate, one 

could spend days finding the peak in the frequency response. 

The computation of in-water modal frequencies of FE/BE 

models using an iterative eigenvalue computation has been shown 

to be both accurate and efficient.  The results have been 

compared to those of a closed-form solution for a spherical shell 

and those of a standard harmonic analysis for a 2-D and a 3-D 

FE/BE model of a flexural disk projector.  For smaller numerical 

models, for which a harmonic analysis is not inordinately time 

consuming, the main advantage of the method is to eliminate the 

guess work in isolating the in-water eigenfrequency of a 

particular mode of interest.  For large models, the method 

additionally provides a tremendous savings in computation time 

compared to the standard harmonic method.  Furthermore, it has 
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been demonstrated that while the error introduced by neglecting ■" 

radiation damping is small, the error arising from the assumption 

of fluid incompressibility can be quite significant. 

There is thus provided a method which is significantly 

faster than the prior art approach set forth hereinabove, 

eliminates the guesswork involved therein in locating the 

appropriate fluid-loaded resonance frequency, and retains the 

compressibility of the fluid, through the frequency dependence of 

the influence matrix. 

It is to be understood that the present invention is by no 

means limited to the particular steps herein disclosed and/or 

shown in the drawings, but also comprises any modifications or 

equivalents. 
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N.C. 77230 

A METHOD FOR DETERMINING THE APPROXIMATE 

RESONANCE FREQUENCY OF A STRUCTURE 

SURROUNDED BY A COMPRESSIBLE FLUID 

ABSTRACT OF THE DISCLOSURE 

A method for determining the approximate resonance frequency 

of a structure surrounded by a compressible fluid includes the 

steps of:  (1) performing an in-vacuo eigenvalue analysis to 

determine in-vacuo frequencies and mode shapes of the structure; 

(2) selecting one of the mode shapes as an in-vacuo mode of 

interest, (3) computing an influence matrix at the eigenfrequency 

of the selected mode of interest; (4) combining the computed 

influence matrix with structural stiffness and mass matrices from 

a finite element program, and using the modified matrices 

computing eigenvalues of the structure, including eigenvectors; 

(5) selecting from the computed eigenvectors a computed mode 

having substantially the same displaced shape as the in-vacuo 

mode of interest; (6) determining the eigenfrequency of the 

selected computed mode; (7) determining any difference between 

the computed eigenfrequency of the selected computed mode and the 

in-vacuo eigenfrequency of the selected in-vacuo mode of 

interest; wherein (8) if the difference is equal to, or less 

than, a selected tolerance, the computed eigenfrequency of the 

computed mode is the approximate resonance frequency of the 
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structure; and (9) if the difference is greater than the   "' ' "" 

tolerance, repeating step (3) substituting the computed 

eigenfrequency of the selected computed mode for the in-vacuo 

eigenfrequency for the in-vacuo mode of interest, and thereafter, 

repeating steps (4) - (9), substituting in step (3) a most recent 

computed eigenfrequency of the selected computed mode for the 

previously used computed eigenfrequency of the selected computed 

mode . 
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